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Abstract 

An inversion technique based on the Markov Chain Monte Carlo (MCMC) method is developed 

for estimating statistics of the infiltration rate and characterizing unsaturated porous media, using 

measurements on hydraulic properties, pressure head, water content, and solute concentration or 

travel time. The MCMC realizations are taken from a posterior distribution, which incorporates 

all available data. The method is first tested using a synthetic dataset, which demonstrates that it 

can reproduce the true dataset very well. The method is then applied to the interpretation of 

water content data from boreholes around the Los Alamos National Laboratory (LANL) for the 

purpose of obtaining estimates of the local infiltration rate. Infiltration rates obtained from 

modeling of water content data from wells in Los Alamos and Mortandad Canyons are in general 

agreement with previous estimates. However, this method also provides reasonable estimates of 

uncertainty for wells in a variety of topographic settings, partially because it takes into account 

heterogeneity in the medium properties. Numerical experiments with the method illustrate that 

including small-scale heterogeneity is important for improved matches to the data.  
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1. Introduction  

Accurately predicting flow and solute transport in subsurface requires accurate and detailed 

estimation of hydrologic parameters as well as uncertainties associated with the estimation. 

Parameter identification has been a major research area in the last two decades, and many inverse 

methods have been developed (Yeh, 1986; Ginn and Cushman, 1990; McLaughlin and Townley, 

1996; Carrera et al., 2005). Zimmerman et al. (1998) gave a comprehensive comparison on seven 

different geostatistically based methods. While many different methods have been used in 

characterizing saturated porous media, applications of these methods to inverse problems under 

unsaturated flow conditions is in very limited. Yeh and Zhang (1996) and Li and Yeh (1999) 

developed geostatistically based sequential cokriging methods,  which incorporate measurements 

on the direct measurements of hydraulic conductivity and pore-size distribution parameter as 

well as measurements on the dependent variables such as pressure head, solute concentration or 

travel time. Vrugt et al. (2004) proposed an inverse model for large-scale spatially distributed 

vadose zone properties using global optimization.  

The Markov Chain Monte Carlo method (MCMC) is a powerful technique in sampling 

parameter space. The method has been used in a number of applications such as history data 

match (Oliver et al, 1997), charactering saturated porous media (Lu et al., 2004;), data 

integration (Lee at el., 2000; Efendiev et al., 2005), and geochemical characterization (Chen et 

al., 2004). One of the advantages of the MCMC method is that it will generate samples from the 

correct posterior probability density function (PDF).  In this study, we developed a Markov 

Chain Monte Carlo method (MCMC) for characterizing hydrologic properties under unsaturated 

flow conditions and applied this method to estimation of hydrologic parameters (infiltration 
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rates, saturated hydraulic conductivity, pore-size distribution parameter, and the fitting parameter 

of the von Genuchton constitutive relationship) at the vicinity of the Los Alamos National 

Laboratory (LANL). The results show that the method provides reasonable estimates of 

uncertainty of the infiltration rate for wells in a variety of topographic settings. 

2. Statement of the Problem 

We consider transient flow in variably saturated porous media satisfying the following continuity 

equation and Darcy's law: 

 ( ) ( , )( , ) ( , ) s
tt g t C

t
∂ψψ

∂
−∇ ⋅ + =

xq x x , (1) 79 
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   (2) ( ) 1, [ ] [ ( , )t K t xψ ψ= − ∇ +q x x

subject to initial and boundary conditions  

 0( ,0) ( ),                      ψ = Ψ ∈Ωx x x ,  (3) 82 

 ( , ) ( , ),                     Dt tψ = Ψ ∈Γx x x   (4) 83 
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 ,  (5) ( , ) ( ) ( , ),             Nt Q t⋅ = ∈Γq x n x x x

 where q is the specific discharge (flux), ψ(x,t) + x1 is the total head, ψ is the pressure head, 

Ψ0(x) is the initial pressure head in the domain Ω, Ψ(x,t) is the prescribed head on Dirichlet 

boundary segments ΓD, Q(x,t) is the prescribed flux across Neumann boundary segments ΓN, 

n(x)=(n1,…, nd)T is an outward unit vector normal to the boundary, C[ψ]= dθ/dψ is the specific 

moisture capacity, θ is the volumetric water content, and K[ψ] is the unsaturated hydraulic 
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conductivity (assumed to be isotropic locally). Both C and K are functions of pressure head and 

soil properties at x. For convenience, they will be written as C(x,t) and K(x,t) in the sequel. The 
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1 is directed vertically upward. In these coordinates, recharge has a negative sign. 

It is clear that models are needed to describe the constitutive relationships of K versus ψ and θe 

versus ψ when the flow is unsaturated. No universal models are available for the constitutive 

relationships. Instead, several empirical models are usually used, including the Gardner-Russo 

model [Gardner, 1958; Russo, 1988], the Brooks-Corey model [Brooks and Corey, 1964], and 

the van Genuchten-Mualem model [van Genuchten, 1980]. Most analytical solutions of the 

deterministic unsaturated flow equations and most stochastic analyses used the Gardner-Russo 

model because of its simplicity. However, it is generally accepted that the more complex van 

Genuchten-Mualem and Brooks-Corey models may perform better than the simple Gardner-

Russo model in describing measured data of K(ψ) and θe(ψ). In this study, we use the van 

Genuchten-Mualem model:  

 1/ 2( , ) ( ) ( , ){1 [1 ( , )] }m m
sK t K S t S t= − −x x x x   (7) 103 

 ( , ) {1 [ ( ) ( , )] }n mS t tα ψ −= + −x x x ,  (8) 104 
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m109 

where ψ  ≤ 0. In the above, S(x,t)= θe/(θs-θr) is the effective saturation, θr is the residual 

(irreducible) water content, θs is the saturated water content, α is the pore-size distribution 

parameter, n is a fitting parameter, and m = 1 – 1/n. With (8), Cs(x,t) = dθe/dψ can be expressed 

explicitly as  

  (9) 1/ 1/( , ) ( )[ ( ) 1]( ) ( , )[1 ( , )]m m
s s rC t n S t S tα θ θ= − − −x x x x x
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In this study, θS and θr are assumed to be deterministic as their variabilities are likely to be small 

compared to that of the effective water content θ
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e [Russo and Bouton, 1992], while the saturated 

hydraulic conductivity Ks, the pore size distribution parameter α, and the fitting parameter n are 

treated as random functions [Lu and Zhang, 2002]. We assume that the log-transformed saturated 

hydraulic conductivity f(x) = ln Ks(x), the log-transformed pore size distribution parameter β(x) 

= ln α(x), and μ(x) = ln [n(x)-1] follow normal distributions. Now suppose that there are fm  

direct measurements on the log hydraulic conductivity, f

115 

i, 1, fi m= , mβ  measurements on the 

pore-size distribution parameter, 
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iβ , 1,i mβ= , and mμ  measurements on the fitting parameter, 117 

iμ , 1,i mμ= . The sampling locations for three different kinds of direct measurements may be 

different. 
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The transport of a nonreactive solute in the heterogeneous porous media can be described by the 

classical convection-dispersion transport equation [Bear, 1972]:  

 ( ) ( ) ( ),
, ,ij

C t
D C t v C t

t
θ
∂

⎡ ⎤∇ ⋅∇ − ⋅∇ =⎣ ⎦ ∂
x

x x  (10) 122 
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subject to appropriate initial and boundary conditions. Here C is the nonreactive solute 

concentration, Dij is the dispersion coefficient tensor, and v is the seepage velocity, which can be 

computed from specific discharge q, as solved from (2). 

An alternative way to characterize nonreactive transport is to record the position of a particle at 

time t that originates from position a at time t = t  and is described by the following kinetic 

equation 

6 



 ( ) ( );d t
dt

=
X a

V X , (11) 129 

with the initial condition of ( )0;t =X a a130 
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132 

, where V is Lagrangian velocity, which can be derived 

from seepage velocity v. Now we are interested on the travel time, the time taken for a particle to 

travel from the initial position a to a well or to across a control plane that is perpendicular to the 

mean flow direction and located at some distance from the source. The travel time 0t tτ = −  can 

be determined from (11) using the particle tracking technique. 
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In summary, in addition to direct measurements on soil properties, it is assumed that we also 

have pressure head measurements at ψ locations, water content measurements at mθ locations, 

and concentration measurements at  locations (or travel time measurements at m
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Cm t locations). 

These indirect measurements can be taken at a number of different elapsed times. The aim is to 

estimate statistics of parameter fields based on all these measurements. 

3. Representation of Soil Properties 

As mentioned above, the soil properties p, where p = f, β, or μ,  are treated as spatially stationary 

random functions with mean 〈p〉, and covariance function Cp(x,y). Because the number of 

parameter values to be estimated is usually much larger than the number of available 

measurements, it is often to parameterize the parameter fields. There are several different ways 

to parameterize a parameter field (McLaughlin and Townley, 1996). In this study, these 

parameter fields are represented by np basis kernel functions bp(x,χ) centered at some fixed 

spatial locations ( ) , 1,p
j pj nχ =  147 
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where ( ) , 1,p
j pj nγ = , are coefficients to be determined in the inverse procedure. The kernel 

functions can be chosen as, for example, an exponential function
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p ii
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where d is the number of space dimensions and λ
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i is a parameter that controls the influence of the 

kernels  in the i( , )pb x χ th dimension. For given basis kernel functions, the parameter field p(x) 

can be computed from coefficients ( ) , 1,p
j pj nγ = . Note that the points ( ) , 1,p

j pj nχ = , on which the 

kernel functions are based, may be chosen differently for different parameter fields. 
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4. Bayesian Inference 

The essence of the Bayesian approach is Bayes' Theorem, which can be understood as a 

mathematical description of the learning process. Bayesian statistical inference requires an 

additional input not needed by frequentist procedures such as maximum likelihood: a prior 

probability distribution for the parameters γ, which embodies our judgment before seeing any 

data D of how plausible it is that the parameters could have values in the various regions of the 

parameter space. The introduction of a prior is the crucial element that converts statistical 

inference into an application of probabilistic inference. When we combine a prior distribution 

π(γ) with the conditional distribution for the observed data, we get a joint distribution: 

164 
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166 

 ( , ) ( ) ( | ) ( ) ( | )D D Dπ γ π γ π γ π π γ= =  (13) 

where D = (fo,βo, μo; ψo,θo, τo, Co) includes all observed data: fo, βo, and μo are respectively the 

vectors of  f, β, and μ measurements, and ψo,θo, τo, Co are vectors of measurements for pressure 
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head, water content, travel time, and solute concentration. From this we can derive Bayes' rule 

for the posterior distribution of the parameters given observed data D: 

 ( | ) ( | ) ( )D L Dπ γ γ∝ π γ169 

170 

171 

 (14) 

where L(D|γ) is the likelihood function. For our problem described above, the likelihood function 

L(fo,βo, μo; ψo,θo, τo ,Co | γ) of observed data D  given parameters γ may be written as 

 ( ) ( ) ( ) ( )1 1

, , , , ,

1 1( | ) exp
2 2

T T
o m o m o m o mp h
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  (15)  

172 

173 

p174 where is an  matrix determined by observation errors and representativeness of 

measurements for parameters p = f, β, and μ, 

1

p

−∑ pm m×

1

h

−∑ is an hm m175 

176 

177 

178 

h×  matrix accounting for 

observation error and model discrepancy on dependent variables  h = ψ, θ, τ, or C.  Note that 

some of terms in (15) can be missing, depending on the availability of observation data. For the 

Bayesian approach, we need to specify a prior distribution for γ. One such example is 

 ( ) ( )2/ 2 ( ) ( ) / 2 ( ) ( )

, ,

1 1( | ) exp  exp
2 2

Tm p p m
i j

p f i j
D Wγ γ γ γ

β μ
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⎬179 
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  (16) 

where is the set of pairwise adjacencies, and matrix W is defined as 
i j
∑
∼

  (17) 
1                  if   and  are adjacent

                 if   =                     
0                  otherwise                

ij i

i j
W n i j

−⎧
⎪= ⎨
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and ni is the number of neighbors to location i. The prior distribution for the hyperparameter λγ in 

(16) can be chosen as a Gamma distribution 
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184 

 1( ) ba e γλ
γ γπ λ λ −−∝  (18) 185 

186 Finally, the posterior distribution of parameters (γ, λγ) given observed data D can be written as 
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 ( , | ) ( | ) ( | ) ( )D L Dγ γ γπ γ λ γ π γ λ π λ∝ . (19) 

Estimation and inference are based on this posterior distribution. Note that we only need to know 

the posterior distribution up to a constant proportionality for our Markov Chain Monte Carlo 

simulations discussed in the next section.  

5. Markov Chain Monte Carlo Simulations 

Sampling methods based on Markov chains incorporate the required search aspect in a 

framework where it can be proved that the correct distribution is generated at least in the limit as 

the length of the chain grows. Writing (γ, λγ)(t) for the set of variables at time step t, where γ itself 

is a vector, the chain is defined by giving an initial distribution (γ, λγ)(0) and the transition 

probabilities for (γ, λγ)(t) given the value for (γ, λγ)(t-1). These probabilities are chosen so that the 

distribution of (γ, λγ)(t) converges to that for (γ, λγ) as t increases and so that the Markov Chain 

can feasibly be simulated by sampling from the initial distribution and then in succession from 

the conditional transition distributions. 

Typically the Markov chain explores the space in a "local fashion". In some methods for 

example (γ, λγ)(t) differs from (γ, λγ)(t-1) in only one component of the state, e.g., it may differ 

with respect to γi
(t), a component of γ, for some i but have γj

(t) = γj
(t-1) for j ≠ i. Other methods may 
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213 

change all components at once but usually by only a small amount. Locality is often crucial to 

the feasibility of these methods. In the Markov chain framework it is possible to guarantee that 

such step-by-step local methods eventually produce a sample of points from the globally correct 

distribution. The procedure implemented in this study can be summarized as follows: 

(1) Initialize parameters at some value (γ, λγ)(0). Theoretically, they can be initialized by any 

numbers taking from the initial distribution. For example, one can initialize (γ, λγ) by drawing a 

set of random numbers. In this study, we choose γ such that the initial parameter fields are close 

to the mean fields. 

(2) Update each γi according to Metropolis rules: 

• Draw a value γi
* from a uniform distribution U[γi

(t-1)− r, γi
(t-1) + r], where r is a pre-

determined small number. Let γ* be a vector that differs from γ(t-1) only in their ith 

component, i.e., γ* = ( , …, ( 1)
1

tγ − ( 1)
1

t
iγ
−

− , ( )t
iγ , ( 1)

1
t

iγ
−

+ …, ( 1)t
nγ
− )T.  214 

215 

216 

217 

218 

219 

220 

221 

• Compute η = π(γ*,λγ|D)/π(γ(t-1),λγ|D). Accept new value γi
* with probability min(1,η), 

else reject new value γi
* (i.e., keep γi unchanged). In other words, if the newly proposed 

value increases the posterior probability (i.e., η >1), the new value is accepted. Note that 

even if the proposed value reduces the posterior probability (i.e., η < 1), the value could 

still be accepted with a probability of η. 

(3) Update λγ given γ according to the following posterior distribution of λγ, again using 

Metropolis rules: 

 ( | ) ( | ) ( ) ,
2 2

Tm Wa bγ γ γ
γ γπ λ γ π γ λ π λ

⎛ ⎞
∝ Γ + +⎜

⎝ ⎠
∼ ⎟222 , (20) 
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where a and b are two prescribed constants. 223 
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244 

(4) Repeat steps 2 and 3 as needed. 

There are considerable discussions on the convergence diagnosis of the MCMC algorithms 

(Brooks, 1998). For simplicity, the convergence of the chain in this study is determined from the 

plots of the log posterior density versus the number of updates. Because the first portion of the 

chain may depend on the initial setting, to reduce the possible effect of the starting values, the 

first portion of the chain is discarded (called burn-in or warm-up period). There are some 

discussions on the length of the burn-in period. In practice, throwing away the initial 1 or 2 % of 

runs will usually suffice (Geyer, 1992). Each realization in the remaining chain will fit the 

observed data very well and parameter statistics can be computed from this chain. Since the 

chain explores the parameter space in a local fashion, realizations in the chain are usually auto-

correlated. To reduce the autocorrelation, subsampling technique is used in computing the 

parameter statistics from the chain (Geyer, 1992). 

6. Illustrative Examples 

In this section we first demonstrate our inverse method for one-dimensional unsaturated flow in a 

hypothetical heterogeneous porous medium, whose properties are assumed to be known and will 

be compared with the inversion results. The inverse method is then applied to real examples of 

the water-content data collected on the Pajarito Plateau, New Mexico.  

6.1 Synthetic Example 

For this hypothetical problem, the flow domain is a soil column with a depth of L = 10 m, 

uniformly discretized into 100 elements (101 nodes). The pressure head is prescribed at the 

bottom as ψ(0) = 0 (the water table) and water infiltration with a rate of q = 0.002 m/day is 
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prescribed at the top. The statistics of soil properties for this hypothetical soil are given as 〈f〉 = 

1.0, = 1.0, 〈β〉 = 0.5, = 0.01, 〈μ〉 = −0.9, = 0.01, and a correlation length of λ

245 
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256 

257 
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260 

261 

262 

263 

264 

265 

266 

2
fσ 2

βσ 2
μσ f = λβ = λμ 

= 1.0. The variability of these parameters can also be given in terms of the coefficient of 

variation as CVKs = 131%, CVα = CVn ≈  10%. We then generate three random fields as “true” 

parameter fields, using the specified statistics and exponential covariance functions for three soil 

properties. These “true” fields are used as references to access the quality of our inverse model. 

We solve flow equations (both steady state and transient flow) and transport equations using 

these true parameter fields to obtain “true” head fields (steady state or transient) and 

concentration fields.  

We take nf = nβ = nμ = 5 samples from these true parameter fields as our direct measurements of 

f, β, and μ. We also take nψ = nθ  = 20 samples for the pressure head and water content and nC = 

6 concentration samples at three elapsed times t = 0.1, 10.0, and 100. The measurement locations 

are illustrated in Figure 1. After taking all these measurements, we proceed as though the 

ensemble statistics (the mean, variance, and correlation lengths) used in generating these original 

parameter fields are not available, and that all we have are the direct and indirect measurements. 

Our purpose is to estimate three parameter fields using these measurements. 

As a first step, we may need to estimate sample statistics of soil properties. Several methods can 

be used to estimate the sample statistics, i.e., the mean, variance, and correlation length. One 

simplest way is to compute the mean and the variance from direct measurements and find the 

correlation length by fitting the variogram. An alternative is to estimate these statistics from the 

maximum likelihood method using both direct and indirect measurements. In our Markov Chain 

Monte Carlo method (MCMC), these statistics can be estimated simultaneously in the inverse 
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process.  However, in this preliminary study we compute these statistics from direct 

measurements only. These estimates are 〈f〉 = 1.711, σ

267 

268 

269 

270 

271 

f
2 = 1.455, 〈β〉 = 0.477, σβ

2 = 0.012, 〈μ〉 = 

−0.848, σμ
2 = 0.008, and a correlation length of λf = λβ = λμ ≈ 1.2. 

For the MCMC method, based on the domain size and the estimated correlation length of about 

1.2, we use a grid of 18 basic kernel locations, more-or-less uniformly distributed in the domain 

as shown in Figure 1. The error matrices ∑p
are chosen to be

pnp Iε , where p = f, β, μ, ψ, θ, or 

C, and I  stands for an identical matrix of n × n, and ε's are prescribed standard deviations for 

errors of variables p's. Here we choose 

272 

n273 

fε = 0.10, βε  = 0.02, με = 0.02, ψε  = 0.01, θε  = 0.005, 

and 

274 

Cε  = 0.002.  275 

276 

277 

278 

279 

280 

281 

p

The estimated soil parameter fields from the MCMC method (dashed curves) are illustrated in 

Figure 2, as compared to the true parameters fields (solid curves). It is seen from the figure that 

the estimated parameter fields match the trend of the true fields very well. Note that the 

estimated values at the conditioning points deviate from their corresponding true values, because 

the specified measurement errors in the MCMC method allow the estimated values vary within 

some ranges. The degree of such deviations is characterized by the standard deviation of errors 

specified by ε , where p = f, β, or μ. 282 

283 

284 

285 

286 

Figures 3, 4, and 5 compare the true pressure head, moisture content and concentration profiles 

against the simulated ones at three different times. Although the estimated fields cannot capture 

the detail variation of true fields, they reproduce the general trends of the true fields very well. 

These results suggest that the MCMC method is capable of providing excellent fits to the 
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hydrologic data, making it an appropriate method for the water-content data for the Pajarito 

Plateau. 

6.2 Application of the MCMC method to the Los Alamos site, New Mexico 

In this section, we apply the MCMC method described above to use the water-content data to 

estimate local infiltration rate at a number of well locations in the vicinity of the LANL site. 

Since there is significant model development required to implement this new analysis approach, 

we begin by discussing the model setup. Then, we examine one of the wells, MCOBT-4.4, in 

greater detail, using it to assess the effectiveness of the technique. We then present the analyses 

for the other wells in a more concise way.  

Table 1 lists the hydrologic properties used for the model (Rogers and Gallaher, 1995; Rogers et 

al., 1996; Broxton et al., 2002). The table contains both the permeability and porosity values 

used for each unit, as well as unsaturated hydraulic parameters, α and n, for defining the van 

Genuchten (1980) constitutive relationship. We assume that porosity is a deterministic constant 

(a constant for each type of stratigraphic unit), while the permeability, pore-size distribution 

parameter α, and fitting parameter n, are spatially random functions and are modeled by log-

normal distributions.  The property values of a unit listed in the table will be used as initial 

values for the MCMC simulation if the unit occurs in a borehole. 

6.2.1 Model Setup 

Although the method is not restricted to these assumptions, the simplified model used to perform 

the MCMC analyses of the moisture content profiles is a one-dimensional, steady state flow 

model with uniform numerical grids. The goal of the analysis is to estimate the infiltration rate 

and hydrologic parameters associated with the measured water contents from the wells. 
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330 

Therefore, in general, the infiltration rate, the saturated hydraulic conductivity, and the van 

Genuchten parameters are jointly varied in the inverse model runs. For testing purposes, other 

strategies are employed to examine the influence of these choices on the inversion results. 

The finite-element heat and mass-transfer code (FEHM) of Zyvoloski et al (1997) is used to 

perform the model runs. Grid spacing was chosen so that, in general, the spacing was smaller 

than the spacing of water content measurements. This approach reduces the possible loss of 

conditional points. For cases in which more than one measurement is located in single 

computational grid cell, the average water content value of all measurement points were taken 

this node as a new conditional point. In addition, since for each node there are three parameters 

to be estimated, there are practical limitations to the resolution of the grid for situations in which 

parameters are allowed to vary on a node-by-node basis. For these reasons, we selected a grid 

spacing ranging from about 3 to 5 feet, depending on the problem.  

The one-dimensional column representing a given well is divided into a number of zones, mainly 

based on the hydrostratigraphy determined from well logs. When detailed information (upper 

and lower bounds) about subdivisions in a particular formation is available, each subdivision is 

defined as an individual zone. Initially, hydraulic properties are assumed to be the same for all 

subdivisions of the formation, and the MCMC method seeks to fit the water content data by 

adjusting the hydrologic parameters in the column. Three strategies are employed for this 

purpose: 

1. Properties are assumed to be random constants within a zone, but vary from zone to zone. 

2. Properties are defined by a set of kernel functions, the coefficients of which are updated 

sequentially. 
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3. Properties are defined on a node-by-node basis. 

These methods represent increasingly complex models of the heterogeneities in hydrologic 

properties. Part of our study will consist of assessing which method is the appropriate level of 

complexity for a given data set, taking into consideration data sparseness and computational 

efficiency. In most cases, we will not use the node-by-node approach (method 3) due to 

computational costs and data limitations. For example, for a soil column of 100 nodes, there are 

300 hydraulic parameters plus the infiltration rate, which means that for any particular 

parameter, 301 model runs are required to perform an update. The reason to develop method two 

is that it seems like a reasonable compromise that allows heterogeneities within thick units to be 

modeled without an excessive number of parameters. 

Finally, because the water content measurements are usually available in the upper part of the 

well and hydraulic properties in the deep zones that are far away from the measurement locations 

have little impact on data fitting, properties in these deep zones are modeled as random 

constants. 

In each MCMC simulation, the run starts from an initial set of soil parameters and infiltration 

rate, and the parameter values are updated sequentially based on the rules described above. One 

of the virtues of the approach is that the parameter uncertainty statistics can be derived from the 

variability of values obtained during the chain. However, the estimated parameters in the first 

part of the chain strongly depend on the choice of initial settings. Thus, this initialization phase 

of the simulation (called the burn-in period) is ignored when computing parameter statistics.  The 

length of burn-in, which is problem dependent, is determined graphically from a plot of the 

negative log posterior versus the number of updates. Initially, this metric is possibly very large, 
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since the initial setting may significantly deviate from the true solution. The burn-in period is 

approximated graphically as the point in the simulation at which the negative log posterior 

becomes stabilized. 

Since the MCMC method takes a perturbation approach to parameter updating (i.e., the new 

value for any parameter is derived by adding a possible perturbation to the old value), the 

sequence of values for each parameter are not completely independent. As a consequence, the 

computed parameter variance may be artificially small. Because we seek to use the analysis to 

compute the statistics (mean and variance) for each parameter, we take a subset of the sequence 

by selecting values within a predefined interval. The variance for parameter is then used to 

construct the confidence intervals around the mean predictions. 

6.2.2 Borehole MCOBT4-4 

Geologic units encountered in MCOBT-4.4 consist of the following, in descending order: 

canyon-bottom alluvium; deposits of the Cerro Toledo interval; the Otowi Member of the 

Bandelier Tuff, including the basal Guaje Pumice Bed; an upper sequence of fanglomerate and 

sand deposits of the Puye Formation; lavas, interflow units, and subflow deposits of the Cerros 

del Rio volcanic field; and a lower sequence of fanglomerate deposits of the Puye Formation. 

Canyon-bottom alluvium (Qal) was cored from 0 to 63.7 ft depth at MCOBT-4.4. The alluvium 

consists predominantly of moderately weathered detritus of the Tshirege Member of the 

Bandelier Tuff and is unconsolidated. In this study, we exclude this layer of alluvium in our 

simulations. The simulation domain ranges from the depth of 64ft (elevation 6769.2ft, or 

2063.25m) to 493ft (elevation 6343.2ft, or 1933.4m), where perched water occurs. The soil 

column is uniformly discretized into 143 elements of size 3ft (0.914m). There are 30 
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measurements of water content available. Here we assume that the error matrix for the water 

content as appeared in (15) is a diagonal 
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We conducted several simulation runs to investigate the sensitivity of simulation results on 

model settings. In the first case, we fix the hydrologic properties of the column based on 

stratigraphic units at the borehole, while allowing the infiltration rate to vary, starting from a 

lower value of 5×10-7 kg/sec (=15.7 mm/year) with a possible maximum increment of r = 2×10-7 

kg/sec at each update. The fitting between the observed and modeled water content is not very 

good for this run, as evidenced by a large root-mean-square-error (RMSE) of water content 

(0.056) in Table 2. With only the infiltration rate being varied, and no adjustment of the 

hydrologic properties, the method is limit in its ability to capture the details of the water content 

profile.  

 
Next, we examine the results with an identical parameter strategy as above, but start the MCMC 

simulation with a very high infiltration rate of 5×10-5 kg/sec (=1568 mm/year) and a possible 

maximum increment of r = 1×10-6 kg/sec at each update. Note that the estimated infiltration rate 

from these runs are very close, indicating that final infiltration rate is independent of the initial 

value. However, it seems from these two cases that good fits to the measured water content data 

cannot be obtained by simply varying the infiltration rate alone. Modification of hydraulic 

parameters appears to be required to fit the observed water-content data. 

In the third case, in addition to the variable infiltration rate, we allow the hydraulic properties to 

vary as random constants, i.e., all three soil parameters for each layer varying in probability 

space but being uniform in the layer.  Again, it seems that the fitting is not that good (Table 2). 

All these three cases indicate that some of the layers at well MCOBT4.4 have to be modeled by 
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individual nodes or by sets of kernel functions such that the soil properties vary in the layers 

rather than uniform layers as in the previous three cases. 

In the next run (case 4), we model the soil properties in Qbo (depth 101.9 to 462 ft) by 10 kernel 

functions while other three thin layers (Oct, 64-101.9ft, Qbog, 462-474ft, and Tpf, 474-493 ft) by 

individual nodes. We have in total 143 grid nodes, 23 of which are modeled individually and a 

121 nodes of which are represented by 10 kernel functions. This ends up 33 groups of soil 

parameters, plus one additional parameter for the infiltration rate, which means that each 

parameter will be updated after 100 (= 3 × 33 + 1) model runs. The initial soil properties at grid 

nodes are assigned based on their stratigraphic units and the initial infiltration rate is 5×10-7 

kg/sec (=15.7 mm/year). Figure 6(a) depicts the negative log posterior as a function of the 

number of updates. The figure shows that the negative log posterior reduces quickly at the 

beginning as the number of updates increases and then stabilizes at about 10, which is equivalent 

to the root-mean-square-error (RMSE) of 0.0082 for water content. Figure 6(b) illustrates the 

decrease of the negative log posterior for the first hundreds of updates as a function of 34 

parameter groups, where the zeroth variable corresponds to the infiltration rate and the first 

group of variables represents soil properties at the top node, and so on. The figure clearly shows 

that updates on the infiltration rate have a significant effect on reducing the negative log 

posterior. Furthermore, varying the soil properties in the bottom part of the column does not have 

significant impacts on data fitting. 

The comparison between the modeled and observed water content is illustrated in Figure 7(a), 

where results from different number of updates are also shown. The figure indicates that, by 

updating soil properties at each node the upper part of column, we are able to fit observed water 
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content very well. It is also seen from the figure that in the lower part of Qbo the water content 

could vary significantly, partially because there is no data in this part of the column. It is 

interesting to notice that the water content in the bottom two layers (below 1945m) changes very 

little, even though the soil properties in these layers are highly heterogeneous (Fig. 8). The 

estimated mean and standard deviation of the infiltration rate are 125.3 mm/yr and 30.9 mm/yr, 

respectively. Since the infiltration rate is normally distributed (as shown later), these statistics 

mean that at the 95% confidence level the actual infiltration rate ranges from 63.5 mm/yr to 

187.1 mm/yr. 

All simulations presented thus far have used the mean values of parameters listed in Table 1 for 

the initial values of the MCMC run. To test the sensitivity of the inversion results on initial 

hydrologic properties, three more cases were performed with different starting parameter values 

than those in case 4, which is considered to be the base case. In case 5, we initialize the model 

with permeability values 20 times larger than the values based on the stratigraphic units. In cases 

6 and 7, the initial α and n fields are respectively 1.5 larger than those in case 4.  

The estimated mean and standard deviation of infiltration rate for these different cases (cases 4-

7) are listed in Table 2, along with the root-mean-square-error (RMSE) for each case. Although 

the statistics of the infiltration rate differ from case to case, all four cases (the base case and the 

three sensitivity runs) fit the observed water content equally well, as evidenced from the RMSE 

in Table 2.  The histograms of the infiltration rate for these cases are illustrated in Figure 9. For 

comparison purposes, the histogram for the base case is also shown. It is interesting to see that 

the histogram of the infiltration rate for the base case and the case with an initially high 

permeability setting follows approximately the normal distribution, whereas the cases with high 
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α and n values the histogram exhibit skewness and, in the case of Figure 9b, bimodality. In 

addition, the table shows that the infiltration statistics from the case with an initially high 

permeability setting (case 7) are very close to those of the base case, indicating that initial setting 

for the permeability field does not have a significant impact on the data fitting. On the other 

hand, initially relatively large deviations of  α and n from their mean values yield non-Gaussian 

distributions of the infiltration rate. This may stem from the fact that the infiltration is linearly 

proportional to permeability, while its relationships with α and n are nonlinear.   

6.2.3 Other Boreholes 
The MCMC method has been applied to several other wells at the Los Alamos site to estimate 

the infiltration rate at the well locations. The summary of infiltration rates presented in Table 3 

illustrates the wide range of infiltration values obtained from water content profiles, depending 

on the topographic setting and location within canyons. Overall, the results are in general 

agreement with past analyses of infiltration rates at these and other similar locations on the 

Pajarito Plateau. For example, the difference in infiltration rate estimated between LADP-3 and 

LADP-4 illustrates the vast difference in downward percolation flux depending on whether the 

location in a wet canyon or a mesa/dry canyon. Within Los Alamos Canyon itself, the difference 

between LADP-3 and LAOI(A)-1.1 is thought to be due to the proximity of the latter well to a 

more intensely fractured region associated with the Guaje Mountain fault zone (Gray, 1997). The 

estimated value in R-9, located further down canyon, is lower than that of either of these two 

wells. However, the infiltration into highly fractured basalts with low permeability matrix may 

violate the basic assumption of porous flow in some of the rock units, making this estimate 

potentially suspect. 
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In Mortandad Canyon, the relative infiltration rates in the two wells are in keeping with the 

locations of these wells. MCOBT-4.4 is located further up canyon, and it may be that the source 

of water in MCOBT-8.5 may be depleted by infiltration and ET processes at this down-canyon 

location. Another factor to consider in Mortandad Canyon is that the analyses in these 

intermediate wells are focused on water content values in the upper part of the stratigraphic 

section. Recent reductions in the water discharged from the Radioactive Liquid Waste Treatment 

Facility (RLWTF) may have already impacted the water content values in the upper parts of the 

vadose zone where the measurements are made. If this is the case, then the infiltration rate 

estimates reflect the present-day infiltration rate, rather than the historical, presumably higher, 

infiltration rate. This concept of declining infiltration rate over time due to changes in the 

operation of the RLWTF has been promoted by Kwicklis et al. (2005), who applied the concept 

to an interpretation of several tritium peaks in well R-15. In principle, a transient analysis of the 

water content information could be performed for these wells to examine this possibility, but this 

approach was beyond the scope of this study. The analysis developed herein should be extended 

to this and other wells in Mortandad Canyon to evaluate the water content and contaminant 

profile information. 

7. Summary and Conclusions 

With regard to the new analysis technique, the MCMC method proved to be a very effective 

means for determining the mean and standard deviation of infiltration from the water content 

profiles. Obtaining the standard deviation is an important advance because many inverse 

techniques yield unrealistic estimates of the uncertainty. The MCMC method should provide 

appropriate uncertainty estimates because it takes into account heterogeneity in the medium 

properties, using that as a basis for obtaining better fits to the water content data. Numerical 
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experiments with the method illustrate that including small-scale heterogeneity is important for 

improved matches to the data. When applied to the data from wells in the vicinity of LANL, the 

method provided reasonable estimates of uncertainty for wells in a variety of topographic 

settings. The more advanced versions of the method that include transient flow and solute 

transport should be useful for interpreting data currently being collected as part of the ER 

activities in Mortandad Canyon and other locations around the Laboratory. 
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Table 1. Stratigraphic Units and Their Hydraulic Properties at the Los Alamos Area 

 
No Description k(m2) α (1/m) n porosity

1    Tsfu (all units below Tsfuv, undifferentiated, volcaniclastic)     2.65E-13 5 2.68 0.35

2    Tb1A (Cerros del Rio basalt-occurs within Santa Fe group)       2.96E-13 5 1.5 0

3    Tsfuv (Santa Fe Group, aquifer unit)                                           2.65E-13 5 2.68 0.35

4    Tb2 (Cerros del Rio basalt-occurs within Tsfuv)                        2.96E-13 5 1.5 0

5    Tpt (Puye Formation, Totavi equivalent)                                     4.73E-12 5 2.68 0.35

6    Tpf (Puye Formation, fanglomerate)                                           4.73E-12 5 2.68 0.35

7    Tb4 (Cerros del Rio basalt-occurs within Puye Formation)        2.96E-13 5 1.5 0

8    Tt1 (Tschicoma dacite-occurs within Puye Formation)               2.96E-13 5 1.5 0

9    Tt2 (Tschicoma dacite-occurs within Puye Formation)               2.96E-13 5 1.5 0

10    Qbog (The Guaje pumice bed)                                                     1.53E-13 0.081 4.026 0.667

11    Qbof (Otowi member of Bandelier Tuff)                                     7.25E-13 0.66 1.711 0.469

12    Qct (Cerro Toledo interval)                                                         8.82E-13 1.52 1.506 0.473

13    Qbtt (Basal Pumice Unit, Tshirege member of Bandelier Tuff)  1.01E-12 1.52 1.506 0.473

14    Qbt1g(Glassy unit, Tshirege member of Bandelier Tuff)           3.68E-13 2.22 1.592 0.509

15    Qbt1v(Vitric unit, Tshirege member of Bandelier Tuff)             1.96E-13 0.44 1.66 0.528

16    Qbt2 (Unit 2, Tshirege member of Bandelier Tuff)                    7.48E-13 0.66 2.09 0.479

17    Qbt3 (Unit 3, Tshirege member of Bandelier Tuff)                     1.01E-13 0.29 1.884 0.469

18    Qbt3t (Unit 3t, Tshirege member of Bandelier Tuff)                   5.10E-13 2.57 1.332 0.466

19    Qbt4 (Unit 4, Tshirege member of Bandelier Tuff)                     9.18E-14 0.667 1.685 0.478

20    Qbt5 (Unit 5, Tshirege member of Bandelier Tuff)                     1.43E-14 0.17 1.602 0.349
583 
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Table 2. Test Cases for Well MCOBT-4.4 
 

Case # Description 

Mean 
infiltratio

n rate 
(mm/yr) 

Std deviation 
of infiltration 
rate(mm/yr) 

RMSE of 
water 

content 
Comments 

1 
Deterministic hydrologic 
properties; random infiltration rate 
(starting from lower q) 

442.6 25.6 0.0562 Poor fitting 

2 
Deterministic hydrologic 
properties; random infiltration rate 
(starting from higher q) 

439.4 22.4 0.0562 Poor fitting 

3 Random constant hydrologic 
properties; random infiltration rate  122.9 78.7 0.0488 

Normally 
distributed 

infiltration rate 

4 
Correlated hydrologic properties; 
random infiltration rate, starting 
from mean properties (base case) 

125.3 30.9 0.0084 
Normally 
distributed 

infiltration rate 

5 
Correlated hydrologic properties;  
random infiltration rate, starting 
from higher α values (1.5 times) 

44.3 11.8 0.0089  

6 
Correlated hydrologic properties; 
random infiltration rate, starting 
from higher n values (1.5 times) 

78.4 21.3 0.0098  

7 
Correlated hydrologic properties; 
random infiltration rate; starting 
from higher Ks values (20 times) 

129.2 28.2 0.0090 
Normally 
distributed 

infiltration rate 
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Table 3. Summary of Estimated Infiltration Statistics at Different Wells 

 

Wells Locations Mean infiltration 
rate (mm/yr) 

Std deviation of 
infiltration 

rate(mm/yr) 
Comments 

MCOBT-4.4 MC Canyon 125.3 30.9  

MCOBT-8.5 MC Canyon 21.9 5.7 No perched water 

LADP-3 LA Canyon 220.0 16.7  

LADP-4 DP Canyon 10.9 1.9 No perched water 

R-9 LA Canyon 139.9 84.2  

LAOI(A)-1.1 LA Canyon 523.7 45.9  
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597 Figure 1. Layout of the problem configuration for the hypothetical example. 
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Figure 2. Comparison of the true soil properties and inverse results for the 
synthetic example. 
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Figure 3. Comparison of the true and simulated pressure head profiles for the 
synthetic example. 

 

θ

x 1

0.10 0.15 0.20 0.250

2

4

6

8

10
True
MCMC

t = 0.1(a)

θ
0.10 0.15 0.20 0.250

2

4

6

8

10
t = 10(b)

θ
0.10 0.15 0.20 0.250

2

4

6

8

10
t = 100(c)

 606 

607 
608 
609 

Figure 4. Comparison of the true and simulated moisture content profiles for the 
synthetic example. 
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Figure 5. Comparison of the true and simulated concentration profiles for the 
synthetic example. 
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Figure 6. Negative log posterior vs (a) the number of updates, and (b) parameter 
groups. 
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Figure 7. (a) Comparison of observed water content with fitted profiles of 
different numbers of updates for the case 4, and (b) the mean and confidence 
interval for volumetric water content. 
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Figure 8. Estimated statistics of hydrologic properties, mean (red curves) and plus/minus two 
standard deviations (blue and green curves), for the case with random constant soil properties 
and a random infiltration rate. 
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Figure 9. Histograms of the infiltration rate derived from simulations with various 
initial settings that are different from those based on rock units: (a) based on rock 
units, case 4, the base case, (b) α values are 1.5 times larger, case 5; (c) n values 
are 1.5 times larger, case 6; and (d) permeability is 20 times larger, case 7. 
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